58,932 research outputs found

    Geometry of Deformed Boson Algebras

    Full text link
    Phase-space realisations of an infinite parameter family of quantum deformations of the boson algebra in which the qq-- and the qpqp--deformed algebras arise as special cases are studied. Quantum and classical models for the corresponding deformed oscillators are provided. The deformation parameters are identified with coefficients of non-linear terms in the normal forms expansion of a family of classical Hamiltonian systems. These quantum deformations are trivial in the sense that they correspond to non-unitary transformations of the Weyl algebra. They are non-trivial in the sense that the deformed commutators consistently quantise a class of non-canonical classical Poisson structures.Comment: 20 pages, late

    Supersymmetric reduced models with a symmetry based on Filippov algebra

    Full text link
    Generalizations of the reduced model of super Yang-Mills theory obtained by replacing the Lie algebra structure to Filippov nn-algebra structures are studied. Conditions for the reduced model actions to be supersymmetric are examined. These models are related with what we call \{cal N}_{min}=2 super pp-brane actions.Comment: v3: In the previous versions we overlooked that Eq.(3.9) holds more generally, and missed some supersymmetric actions. Those are now included and modifications including a slight change in the title were made accordingly. 1+18 page

    Noncommutative D-Brane in Non-Constant NS-NS B Field Background

    Get PDF
    We show that when the field strength H of the NS-NS B field does not vanish, the coordinates X and momenta P of an open string endpoints satisfy a set of mixed commutation relations among themselves. Identifying X and P with the coordinates and derivatives of the D-brane world volume, we find a new type of noncommutative spaces which is very different from those associated with a constant B field background.Comment: 11 pages, Latex, minor modification

    Simulations of a classical spin system with competing superexchange and double-exchange interactions

    Full text link
    Monte-Carlo simulations and ground-state calculations have been used to map out the phase diagram of a system of classical spins, on a simple cubic lattice, where nearest-neighbor pairs of spins are coupled via competing antiferromagnetic superexchange and ferromagnetic double-exchange interactions. For a certain range of parameters, this model is relevant for some magnetic materials, such as doped manganites, which exhibit the remarkable colossal magnetoresistance effect. The phase diagram includes two regions in which the two sublattice magnetizations differ in magnitude. Spin-dynamics simulations have been used to compute the time- and space-displaced spin-spin correlation functions, and their Fourier transforms, which yield the dynamic structure factor S(q,ω)S(q,\omega) for this system. Effects of the double-exchange interaction on the dispersion curves are shown.Comment: Latex, 3 pages, 3 figure

    The creeping motion of liquid drops through a circular tube of comparable diameter

    Get PDF
    The creeping motion through a circular tube of neutrally buoyant Newtonian drops which have an undeformed radius comparable to that of the tube was studied experimentally. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop owing to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow are reported for various viscosity ratios, total flow rates and drop sizes

    Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid

    Get PDF
    The lateral migration of a neutrally buoyant rigid sphere suspended in a second-order fluid is studied theoretically for unidirectional two-dimensional flows. The results demonstrate the existence of migration induced by normal stresses whenever there is a lateral variation of the shear rate in the undisturbed flow. The migration occurs in the direction of decreasing absolute shear rate, which is towards the centre-line for a plane Poiseuille flow and towards the outer cylinder wall for Couette flow. The direction of migration agrees with existing experimental data for a viscoelastic suspending fluid, and qualitative agreement is found between the theoretically predicted and experimentally measured sphere trajectories
    • …
    corecore